Parameters, variables, and functors

The escape.core.objects module provides methods to create variables, parameters, and functors.

Model parameters

There are two types of model parameters in ESCAPE: independent and dependent. Both are represented by parameter_obj type. Independent parameters are optimized during curve fitting by optimizer. Dependent parameters are those which are defined, for example, with algebraic expressions. Since both have the same type, user can control dependencies of parameters in a single model or between several models.

This gives a lot of flexibility. For example, one layer in your sample has a parameter T - thickness with initial value of \(100\quad nm\) And you know that every next layer is \(\delta T=10\quad nm\) larger, than previous. You can define thiknesses of layers as following:

>>> T = esc.par("T", 100, units="nm")
>>> dT = esc.par("dT", 10, units="nm")
>>> T1 = T + dT
>>> T2 = T + 2*dT
>>> T3 = T + 3*dT

T1, T2, T3 are dependent parameters. User can use them as input parameters for layer objects and optimizer will optimize only T and dt which are independent.

Parameters support all elementary mathematical functions including trigonometric, for example, dependent parameter can be defined as following

>>> S = esc.sin(T)*esc.cos(T)

The boundaries of independent parameter are set by default to \(\pm 50\%\) of initial value, when are not specified by user. If intitial value is zero, default boundaries are also set to zero. For more details, check full docs for par function below.

Variables and functors.

In ESCAPE functor object fo type functor_obj represents mathematical function of given variables. ESCAPE supports functors of maximum five variables.

Variable is declared as following:

>>> x = esc.var('X')
>>> y = esc.var('Y')

Functors can be defined by user as a mathematical expression, for example, one-dimensional functor:

>>> F1 = esc.sin(x)*esc.cos(x)

or two-dimensional functor

>>> F2 = esc.sin(x)*esc.cos(y)

Special functors can be created by helper functions. Special functors normally represent a more complicated, than a simple mathematical expression, problem. For example, esc.average or esc.specrefl for the calculation of averaging integral or specular reflectivity, respectively. The advantage of this approach is a customization of any scattering problem not only in terms of parameters, but also in terms of final intensity formula. User can easily add custom non-linear background or special illumination correction.

A functor instance returns calculated value when being called

>>> F2(1.0, 2.3)
0.01743834

There are two types of functors in ESCAPE: functor_obj - double functor and cplx_functor_obj - functor which returns complex value. There is also a bool_functor_obj, which returns boolean value, but it is used as a part of conditional functor only (see below).

escape.core.objects.par(name: str = '', value: Union[float, int, str] = 0.0, userlim: Optional[UserLimitLike] = None, fixed: c_bool = False, scale: float = 1.0, limit_scale: float = 0.5, units: str = '', trained: c_bool = False) parameter_obj

Create a new independent parameter object.

Args:

name: Parameter name value: Initial parameter value. Can be a number or string expression userlim: Optional parameter boundaries as (min, max) tuple or list fixed: If True, parameter value will not be optimized scale: Parameter value scale factor limit_scale: Scale factor for automatic boundary calculation when userlim is None units: Parameter units string trained: If True, parameter will be used by neural network regressor

Returns:

A new parameter_obj instance

Raises:

TypeError: If value is not a float, int or str

The parameter can be created either from a numeric value or a string expression. If created from a string, it will be parsed into a dependent parameter. If created from a number, it will be an independent parameter.

For independent parameters, boundaries can be set explicitly via userlim, or calculated automatically based on the value and limit_scale.

escape.core.objects.var(names: Union[str, List[str], Tuple[str, ...]] = 'X') Union[variable_obj, List[variable_obj]]

Create one or more variable objects with the given name(s).

This helper function creates variable objects that can be used in mathematical expressions. Variables are the basic building blocks for creating functors and expressions.

Args:
names: Name or list of names for the variables. Defaults to “X”.

If a single string is provided, creates one variable with that name. If a list/tuple of strings is provided, creates multiple variables.

Returns:
If names is a single string:

A single variable_obj with the given name

If names is a list/tuple:

A list of variable_obj instances, one for each provided name

Examples:

Create a single variable: >>> x = var(“x”) >>> x variable(name=’x’)

Create multiple variables: >>> x, y = var([“x”, “y”]) >>> x, y (variable(name=’x’), variable(name=’y’))

escape.core.objects.func(name, x, val)

Given name name, variables list x and value or parameter val, this function returns const double functor instance.

Parameters:
name: string

Name of the functor.

x: list

Variables list.

val: double value or parameter_obj

Constant value or parameter value which functor will return when being called.

Returns:

Instance of functor_obj.

escape.core.objects.cfunc(name, x, val: complex) cplx_functor_obj

Given name name, variables list x and complex value val, this function returns const complex functor instance.

Parameters:
name: string

Name of the functor.

x: list

Variables list.

val: double complex value

Constant double complex value which functor will return when being called.

Returns:

Instance of cplx_functor_obj.

escape.core.objects.scale(name, func: functor_obj, x=None, y=None) functor_obj

Scale functor to \(Af(x)+B\) so that it crosses (x1, y1) and (x2, y2) points.

Parameters:
func: functor_obj

Functor of one-variable to scale

y: tuple or list

Y ranges to scale functor to. If None y=[0, 1]

x: tuple or list

X ranges to scale functor to. If None x=[0, 1]

Returns:

Instance of functor_obj.

escape.core.objects.reduce(name, func, var: variable_obj, value: Union[float, int, str, parameter_obj], *args) Union[functor_obj, cplx_functor_obj]

Returns functor_obj or cplx_functor_obj instance which binds variables with constant values or parameters and reduces domain size of a given functor. For example, for a given initital functor f(x, y, z), one can achieve a custom functor of reduced domain size, f2(x)=f(x, y=2, z=3) by

>>> f2=reduce(f1, y, 2, z, 3) 
Parameters:
func: functor_obj or cplx_functor_obj

Name of the functor.

var: variable_obj

Variable to be bound

value: parameter_obj or float value

Constant float value or parameter for bound variable.

args: list

Other pairs of variables and values

Returns:

Instance of functor_obj or cplx_functor_obj depending on func type.

escape.core.objects.conditional(cond: Union[bool_parameter_obj, bool_functor_obj], ret_true: Union[float, int, str, parameter_obj, functor_obj, cplx_functor_obj, variable_obj], ret_false: Union[float, int, str, parameter_obj, functor_obj, cplx_functor_obj, variable_obj]) Union[functor_obj, parameter_obj]

Create a conditional parameter or functor based on a boolean condition.

This function creates a conditional parameter or functor that returns either ret_true or ret_false based on the evaluation of the condition.

Args:

cond (Union[bool_parameter_obj, bool_functor_obj]): The boolean condition to evaluate ret_true (Union[ParameterLike, FunctorLike]): Value to return when condition is True ret_false (Union[ParameterLike, FunctorLike]): Value to return when condition is False

Returns:
Union[functor_obj, parameter_obj]: A conditional parameter or functor.

Returns parameter_obj if cond is bool_parameter_obj, otherwise returns functor_obj.

Raises:

TypeError: If cond is not bool_parameter_obj or bool_functor_obj

class escape.core.objects.parameter_obj

Wrapper for dependent or independent parameters.

This class wraps C++ parameter objects and provides a Python interface for parameter manipulation. Parameters can be either independent (directly settable values) or dependent (calculated from other parameters).

static convert(val: Union[float, int, str, parameter_obj], name: str = '', **kwargs) parameter_obj

Convert a value to a parameter object.

Parameters can be defined by formula, for example: >>> par = esc.par(value=”3.0+-1.0nm”) # Value with error >>> par = esc.par(value=”3.0nm”) # Value with units >>> par = esc.par(value=”1<=3.0<=4 nm”) # Value with bounds and units

Args:

val: Value to convert (float, parameter_obj or str) name: Optional name for the parameter **kwargs: Additional arguments for independent parameters

Returns:

parameter_obj: New parameter object

Raises:

TypeError: If val has invalid type

error

Parameter error after optimization.

Returns:

float: The error value

fixed

Whether the parameter is fixed during optimization.

Fixed parameters are recognized and shown by optimizer but their value is fixed during fitting.

Returns:

bool: True if parameter is fixed

force_value(val: float) bool

Set parameter value and new boundaries.

Sets value and adjusts boundaries relative to this value and limit_scale. Can only be used with independent parameters.

Args:

val: New value to set

Returns:

bool: True if successful

Raises:

RuntimeError: If parameter is dependent

get_unscaled_limits() list[float]

Get unscaled parameter boundaries.

Returns:

list[float]: [min, max] list of boundary values

get_unscaled_value() float

Get unscaled parameter value.

Returns:

float: The unscaled value

static grammar(name: str, **kwargs) Any

Get grammar for parsing parameter expressions.

Args:

name: Name for created parameters **kwargs: Additional parameter arguments

Returns:

Grammar: pyparsing grammar object

id

The parameter’s unique identifier.

Returns:

int: The parameter ID

independent

Whether the parameter is independent.

Returns:

bool: True if parameter is independent

max

Maximum value boundary.

Returns:

float: The maximum allowed value

min

Minimum value boundary.

Returns:

float: The minimum allowed value

name

The parameter’s name.

Returns:

str: The parameter name

parameters

Get dependent parameters.

Returns:

list[parameter_obj]: List of parameters this depends on

scale

Parameter value scale.

Returns:

float: The scale value

set_limits(minval: float, maxval: float) None

Set parameter value boundaries.

Can only be set for independent parameters.

Args:

minval: Minimum allowed value maxval: Maximum allowed value

Raises:

RuntimeError: If parameter is dependent

shake(seed: int = -1) None

Randomly perturb the parameter value.

Args:

seed: Random seed to use, or -1 for random

trained

Whether the parameter is used by neural network regressor.

Returns:

bool: True if parameter is trained

units

The parameter’s units.

Returns:

str: The units string

value

The parameter’s current value.

Returns:

float: The parameter value

weight

Parameter weight used in optimization.

Returns:

float: The parameter’s weight value

class escape.core.objects.functor_obj

Wrapper for double functor.

A functor represents a mathematical function that can be evaluated with variables and parameters. This class wraps the C++ functor_t implementation.

constrain(val: bool_parameter_obj) None

Add constraint to functor.

Args:

val: Boolean parameter to use as constraint

constraints

Get list of constraints on this functor.

Returns:

List[bool_parameter_obj]: List of boolean parameter objects

static convert(value: Union[functor_obj, cplx_functor_obj, variable_obj, float, int, str, parameter_obj], parent_or_vars: Optional[Union[functor_obj, cplx_functor_obj, variable_obj, list[escape.core.objects.variable_obj]]] = None) functor_obj

Convert value to functor.

Args:

value: Value to convert - can be functor, variable, parameter etc. parent_or_vars: Parent functor or list of variables to use

Returns:

functor_obj: New functor representing converted value

Raises:

TypeError: If value or parent_or_vars have unsupported types

is_feasible

Check if functor is feasible (satisfies all constraints).

Returns:

bool: True if feasible, False otherwise

name

Get name of functor.

Returns:

str: Name of functor

num_variables

Get number of variables in this functor.

Returns:

int: Number of variables

parameters

Get list of parameters used in this functor.

Returns:

List[parameter_obj]: List of parameter objects

show(coordinates: Optional[ndarray] = None, config: Optional[Any] = None, **kwargs) Any

Show kernel object in a widget.

unconstrain(val: bool_parameter_obj) None

Remove constraint from functor.

Args:

val: Boolean parameter constraint to remove

unconstrain_all() None

Remove all constraints from functor.

variables

Get list of variables used in this functor.

Returns:

List[variable_obj]: List of variable objects

class escape.core.objects.cplx_functor_obj

A class representing a complex functor.

This class provides operator overloading to allow complex functors to be used in mathematical expressions with variables, parameters, functors, and numeric values. Supports arithmetic operations and comparisons.

The complex functor object holds a pointer to a C++ cplx_functor_t instance that handles the underlying implementation.

constrain(val: bool_parameter_obj) None

Add constraint to functor.

Args:

val: Boolean parameter constraint to add

constraints

Get list of constraints on functor.

Returns:

List[bool_parameter_obj]: List of constraints

is_feasible

Check if functor satisfies all constraints.

Returns:

bool: True if functor is feasible, False otherwise

name

Get name of functor.

Returns:

str: Name of functor

num_variables

Get number of variables used in functor.

Returns:

int: Number of variables

parameters

Get list of parameters used in functor.

Returns:

List[parameter_obj]: List of parameters

unconstrain(val: bool_parameter_obj) None

Remove constraint from functor.

Args:

val: Boolean parameter constraint to remove

unconstrain_all() None

Remove all constraints from functor.

variables

Get list of variables used in functor.

Returns:

List[variable_obj]: List of variables

class escape.core.objects.variable_obj

A class representing a variable in mathematical expressions.

This class provides operator overloading to allow variables to be used in mathematical expressions with other variables, parameters, functors, and numeric values. Supports arithmetic operations, comparisons, and power operations.

The variable object holds a pointer to a C++ variable_t instance that handles the underlying implementation.

name

Get the name of the variable.

Returns:

str: The variable’s name