In [1]:
import escape as esc
import numpy as np
import matplotlib.pyplot as plt
from escape.utils.widgets import show
esc.require("0.9.7")
Loading material database from /home/dkor/Data/Development/workspace_escape/escape/python/src/escape/scattering/../data/mdb/materials.db
In [2]:
q = esc.var("Q")
SAXS. Form-factors. Sphere¶
Original: https://www.ncnr.nist.gov/resources/sansmodels/Sphere.html
Author: Denis Korolkov
Calculates the form factor, $P(q)$, for a monodisperse spherical particle with uniform scattering length density. The form factor is normalized by the particle volume as described below.
Parameters¶
Parameter | Variable | Value |
---|---|---|
0 | Scale | 1.0 |
1 | Radius (Å) | 60.0 |
2 | Contrast ($Å^{-2}$) | 1.0e-6 |
3 | Incoherent Background ($cm^{-1}$) | 0.0 |
Usage notes¶
The function calculated is:
The returned value is scaled to units of $cm^{-1}$
Parameter[0] (scale) and Parameter[2] (contrast) are both multiplicative factors in the model and are perfectly correlated. One or both of these parameters must be held fixed during model fitting.
Reference¶
Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, New York, (1955).
In [3]:
I0 = esc.par("Scale", 1, scale=1e8, fixed=True)
R = esc.par("Radius", 60, units=esc.angstr)
rho = esc.par("Contrast", 1, scale=1e-6, units=f"{esc.angstr}⁻²")
bkgr = esc.par("Background", 0.0, userlim=[0, 0.03])
V = 4/3 * np.pi*esc.pow(R, 3)
QR = q*R
P1 = I0/V*esc.pow(3*V*rho*(esc.sin(QR)-QR*esc.cos(QR))/esc.pow(QR, 3), 2)+bkgr
show(P1, coordinates=np.linspace(0.001, 0.3, 128), figtitle="Sphere",
xlog=True, ylog=True, xlabel=f"Q{esc.angstr}⁻¹", ylabel="P(q)[cm⁻¹]")
In [ ]: